GaNHEMT相关论文
DToF (Direct Time-of-Flight)激光雷达通过直接测量激光的飞行时间完成距离测量和地图成像,应用于自动驾驶的DToF激光雷达需要具备更......
随着能源问题和环境问题的日益严峻,推广电动汽车刻不容缓。电动汽车的充电设备有充电桩和车载充电机两种。充电桩需要建设充电站,......
为实现纳秒级的输出光脉宽,使用GaN HEMT作为激光器放电回路的开关管。由于GaN HMET的栅极总电荷小,提出使用小尺寸的GaN HEMT建立驱......
随着高速电机驱动技术的不断发展,高速电机对逆变器高频化的需求也不断增强。传统的硅基开关器件受限于自身材料特性,难以满足高速......
对于薄势垒Ga N HEMT采用传统钝化方式后器件表面漏电严重的问题,我们提出了一种新型钝化方式,该方式重点在于对新片进行清洗后,立......
GaN HEMT器件以其优良的性能被广泛应用于各种领域的电子设备中。由于其经常被用于高频、高温和高辐射的环境中,过高的环境应力会加......
增强型GaN HEMT器件具有耐高压、耐高温、低导通损耗和低开关损耗的特点,被广泛应用于高压高频的功率转换领域。非钳位式感性负载......
宽禁带半导体材料碳化硅(Silicon Carbide,SiC)和氮化镓(Gallium Nitride,Ga N)相较于硅(Silicon,Si)具有更宽的禁带宽度、更高的临界击......
GaN HEMT器件在高功率下由于自热效应的影响会使其结温显著上升,过高的结温会使得器件各个方面的性能发生恶化,导致其大功率性能远......
随着氮化镓(GaN)半导体技术研究和发展,GaN高电子迁移率晶体管(HEMT)单片微波集成电路(MMIC)也逐渐应用于卫星通信、雷达探测以及人们生......
凭借着优良的电气特性,氮化镓高电子迁移率晶体管(GaN HEMT)正逐渐被市场认可并已经率先应用在消费电子领域。由于增强型GaN HEMT的......
氮化镓基高电子迁移率晶体管(High electron mobility transistor,HEMT)具有传统硅基器件难以企及的高击穿电压、高功率密度及低开关......
随着5G时代的到来,以硅(Si)和砷化镓(Ga As)材料为代表的第一、二代半导体,已经无法满足当前大功率场景应用的需求,而以氮化镓(GaN)为首......
GaN材料具有宽禁带宽度、高耐受电压、高功率密度等特性,能够很好地满足功率器件在耐高温、大功率、高效率等方面的性能要求。本文......
微波功率放大器广泛运用在了众多领域之中,例如移动通信基站、雷达、卫星通信、航空航天等。第三代半导体材料GaN以其禁带较宽、高......
随着科技的进步提升、5G时代的来临,现有的第一、二代半导体器件已经无法满足在更高频率、更高功率、更低功耗的通信领域技术发展......
介绍了一种用于高功率高速GaN功率开关的全GaN栅驱动电路。该电路主要基于两个常开型GaN HEMT和一个自偏置电阻。根据该拓扑结构的......
GaN器件为高电子迁移率晶体管(HEMT)器件,它有AlGaN和GaN基器件,以其优异的电子迁移率、禁带宽度、高频、高温、大功率等特性,备受关......
近三十年来,半导体技术的发展遵循着摩尔定律,即器件特征尺寸大概每两年缩短一半。尺寸微缩造成有源器件面临着严峻的自热效应,会......
研究了氮化镓高电子迁移率晶体管(GaN HEMT)的温度特性,分析了自热效应造成GaN HEMT的电流崩塌现象.提出了一种图形化衬底技术来降......
为实现母线变换器的高效率和高功率密度,应用GaN HEMT将LLC-DCX的开关频率提高到1 MHz,在提高了变换器的功率密度的同时,实现了较......
基于GaN高电子迁移率晶体管(HEMT)工艺设计制作了一款收发(T/R)多功能芯片(MFC),主要用于射频前端收发系统。该芯片集成了单刀双掷......
对影响Doherty功放回退效率的因素进行了分析,从输入功率配置、载波功放与峰值功放栅压以及相位平衡等多重角度进行了仿真,并基于......
研究了GaN HEMT开关功率放大器的交流电流和微波性能随温度的变化.研究结果表明,GaN HEMT的高温退化将导致开关功放工作电流及小信......
氮化镓(GaN)高电子迁移率(High Electron Mobility Transistor,HEMT)晶体管具有工作频率高、输出功率密度大、功率效率高等特点,已......
自从全球进入信息化时代以来,随着电子科学与技术的不断发展成熟,第三代半导体材料逐渐展现出更加优秀的射频和大功率特性,成为半......
功率半导体器件在电力电子行业有着非常广泛的应用,是电子产品的基础元器件之一。近年来,功率电子器件朝着高频、大功率的方向发展......
微波无线输能技术的发展,对RF-DC整流器的提出了越来越高的要求。整流器整流效率的高低,成为制约整个系统能量传输效率高低的关键......
为了满足通讯系统日益增长的性能指标,亟需研发更加强大的微波功率器件。用GaN材料制作的高电子迁移率晶体管(HEMT),因其高频率、......
在储能系统、电动汽车、固态变压器等应用场合中,需要通过隔离型双向DC/DC变换器实现电气隔离和双向功率调节。双有源全桥变换器(D......
自上个世纪九十年代以来,AlGaN/GaN HEMT凭借着其优异的特性发展迅猛,与传统的Si器件相比,GaN HEMT可以工作在更高的频率和温度下,......
氮化镓(Ga N)半导体相比于其他几种半导体材料,具有宽禁带(3.39 e V)、高电子迁移率、强抗辐照能力等优点。Ga N基器件凭借这些突出特......
单刀双掷开关是收/发(T/R)组件中的关键部分,用于控制电路中信号的通断和关断。近年来,随着氮化镓(GaN)等第三代半导体的快速发展,GaN ......
伴随着人工智能和现代工业的飞速崛起,半导体行业得以长足发展。根据摩尔定律及行业趋势,功率半导体分立器件及集成模块向着小尺寸......
氮化镓(Gallium Nitride,GaN)高电子迁移率晶体管(High Electron Mobility Transistor,HEMT)工作在高压条件下,会产生电流崩塌效应......
微波收发前端组件进一步小型化需求推动了射频微系统的发展。随着射频微系统集成度的进一步提高,亟需所需的射频芯片也能够和传统......
随着信息技术和国防工业的不断发展,不但AC-DC变换器的需求指数增长,而且技术指标也越来越高。相较于AC-DC变换器的定制开发,模块......
氮化镓高电子迁移率场效应管(Gallium Nitride High Electron Mobility Transistor,简称GaN HEMT)做为新一代宽禁带半导体器件的代......
采用内匹配和功率合成技术,设计了C波段GaN HEMT高功率放大器。电路采用6胞芯片进行功率合成,在陶瓷(Al2O3)基片上设计制作功分器,使其......